• Perry, RD & Fetherston, JD Yersinia pestis-etiological agent of plague. Clin. Microbiol. Rev. 1035–66 (1997).

    CAS Article Google Scholar

  • Meerburg, BG, Singleton, GR & Kijlstra, A. Rodent-borne diseases and their public health risks. Crit. Rev. Microbiol. 35221–270 (2009).

    Article Google Scholar

  • Chung, KPS & Corlett, RT Rodent diversity in a highly degraded tropical landscape: Hong Kong, South China. Biodivers. Conserv. 154521–4532 (2006).

    Article Google Scholar

  • Sridhar, S. et al. Transmission of rat hepatitis E virus infection to humans in Hong Kong: A clinical and epidemiological analysis. Hepatology 7310–22 (2020).

    Article Google Scholar

  • Hadler, M. & Buckle, A. Forty-five years of anticoagulant rodenticides—Past, present and future trends. In Proceedings of the Fifteenth Vertebrate Plague Conference 1992, Vol. 36149–155 (1992).

  • Watt, BE, Proudfoot, AT, Bradberry, SM & Vale, JA Anticoagulant rodenticides. Toxic coal. Rev. 24259–269 (2005).

    CAS Article Google Scholar

  • Whitlon, DS, Sadowski, JA & Suttie, JW Mechanism of coumarin action: Importance of vitamin K epoxide reductase inhibition. Biochemistry 171371–1377 (1978).

    CAS Article Google Scholar

  • Stafford, DW The vitamin K cycle. J. Thromb. Haemost. 31873–1878 (2005).

    CAS Article Google Scholar

  • Tie, JK, Nicchitta, C., von Heijne, G. & Stafford, DW Membrane topology mapping of vitamin K epoxide reductase by in vitro translation/cotranslocation. J. Biol. Chem. 28016410–16416 (2005).

    CAS Article Google Scholar

  • Boyle, CM Case of Apparent Resistance of Rattus norvegicus Birkhout to anticoagulant toxins. Earth 188517 (1960).

    ADS Article Google Scholar

  • Berny, P., Esther, A., Jacob, J. & Prescott, P. In Development of resistance to anticoagulant rodenticides in rodents, Chapter 10 in Anticoagulant Rodenticides and Wildlife Full. 5 (eds van den Brink, NW et al.) 259–286 (Springer, 2018).

    Chapter Google Scholar

  • Hodroge, A., Longin-Sauvageon, C., Fourel, I., Benoit, E. & Lattard, V. Biochemical characterization of spontaneous mutants of rat VKORC1 involved in the resistance to antivitamin K anticoagulants. Arc. Biochem. Biophys. 51514–20 (2011).

    CAS Article Google Scholar

  • Grandemange, A., Lasseur, R., Longin-Sauvageon, C., Benoit, E. & Berny, P. Distribution of VKORC1 single nucleotide polymorphism in wild Rattus norvegicus in France. Pest control. Science. 66270–276 (2010).

    CAS Article Google Scholar

  • Lee, T. et al. Identification of the gene for vitamin K epoxide reductase. Earth 427541–544 (2004).

    ADS CAS Article Google Scholar

  • Rost, S. et al. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Earth 427537–541 (2004).

    ADS CAS Article Google Scholar

  • Pelz, HJ et al. Distribution and frequency of VKORC1 sequence variants conferring resistance to anticoagulants in Mouse muscle. Pest control. Science. 88254–259 (2012).

    Article Google Scholar

  • Rost, S. et al. New mutations in the VKORC1 gene of wild rats and mice – a response to 50 years of selection pressure by warfarin?. BMC Genet. 104 (2009).

    Article Google Scholar

  • Pelz, HJ et al. The genetic basis of resistance to anticoagulants in rodents. Genetics 1701839–1847 (2005).

    CAS Article Google Scholar

  • McGee, CF, McGilloway, DA & Buckle, AP Anticoagulant rodenticides and resistance development in rodent pest species: A comprehensive review. J. Mountains Prod. Res. 88101688–101688 (2020).

    Article Google Scholar

  • Jones C, Talavera M, Buckle A and Prescott C, Anticoagulant resistance in rats and mice in the UK—Summary report with new data for 2019. Report of the Campaign for Responsible Rodenticide Use (CRRU) UK for the Government Watch Group, Vertebrate Pest Unit. The University of Reading. Accessed 18 March 2021 https://www.thinkwildlife.org/downloads/ (2019).

  • Díaz, JC & Kohn, MH A VKORC1-based SNP survey of anticoagulant rodenticide resistance in the house mouse, Norway rat and roof rat in the USA. Pest control. Science. 77234–242 (2020).

    Article Google Scholar

  • Robins, J., Hingston, M., Matisoo-Smith, E. & Ross, H. Identification of Rattus species using mitochondrial DNA. Mole. Ecol. Notes 7717–729 (2007).

    CAS Article Google Scholar

  • DePristo, MA et al. A framework for variation discovery and genotyping using next-generation DNA sequence data. Wet. Genet. 43491–498 (2011).

    CAS Article Google Scholar

  • Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 680–92 (2012).

    CAS Article Google Scholar

  • Aplin, KP et al. Multiple geographic origins of commensalism and complex dispersal history of black rats. PLoS ONE 611 (2011).

    Article Google Scholar

  • Huang, BH et al. Warfarin resistance test and polymorphism screening in the VKORC1 gene Rattus flavipectus. J. Pest Sci. 8487–92 (2011).

    Article Google Scholar

  • Liang, L. The resistance of Rattus flavipectus and R. norvegicus to anticoagulant rodenticide in Zhanjiang Proper. Ken. J. Vector Biol. Control 1621–22 (2005) (in Chinese).

    CAS Google Scholar

  • Mother, XH et al. Low warfarin resistance frequency in Norway rats in two cities in China after 30 years of use of anticoagulant rodenticides. Pest control. Science. 742555–2560 (2018).

    CAS Article Google Scholar

  • RRAG. Anticoagulant resistance in the Norway rat and guidelines for the management of resistant rat infestations in the UK. Rodenticide Resistance Action Group, UK. Revised September 2018. Accessed 4 June 2019 https://www.pestmagazine.co.uk/media/246897/management-of-resistant-norwayratinfestations-in-the-uk-rrag-june-2010.pdf (2018).

  • Wang, J. et al. Warfarin resistance Rattus losea in Guangdong Province, China. Plague. Biochem. Physiol. 9190–95 (2008).

    CAS Article Google Scholar

  • By admin

    Leave a Reply

    Your email address will not be published. Required fields are marked *